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Abstract. The mobility formula recently derived by us has been applied to pure non-polar 
semiconductors and detailed mobility calculations have been carried out for Ge. The optic 
deformation potential and amustic phonon scatterings together give a value of II = 0.43 x Id 
c d  V-' s-' at mom temperature which agrees reasonably with experiment. 

1. Introduction 

For a pure non-polar semiconductor such as Ge, the presence of phonons results in carrier 
scattering which essentially determines the mobility. When we examine the variation of 
electron mobility p as a function of temperature T we have a continuously falling curve 
between 10 K and 500 K. By dividing the T axis into a few parts, this experimental curve 
may be fitted to a curve of the form - T-" in each region. In the region T = 10-77 
K the power n is approximately equal to 1.50 thus confirming the predominant effect of 
acoustic phonons (Nag 1972) predicted by classical and quantum mechanical theories. From 
around 71 K to above room temperature the power n of the fitted curve changes (Morin 
1954, Seeger 1989) to a value of approximately 1.67. showing that in this region acoustical 
phonons alone are not the only effect. To explain the observed mobility, therefore, the 
contribution of optical deformation potential scattering should be considered. It is known 
that when there is more than one scattering effect at the same time, for example p1 and 
pz, their combined mobility is given by l / p  = 1/p1 + 1 / p ~  so the smaller of p1 and 
pz determines the dominant effect (Van Der Ziel). This means that we need an accurate 
expression of mobility for each of the above scattering cases in order to interpret the results. 
In this context there are available the classical theories using the momentum relaxation time 
concept and there is also the more rigorous Kubo formula (Kubo 1957) of conductivity. In 
practice, calculations cannot be done with the direct use of the Kubo formula because it is 
difficult to obtain from it a term in g-2 where g is the coupling constant. This is important 
because for weak scattering this would give the leading term. In a previous study (una1 et 
a1 1992) the problem of putting the Kubo formula into a suitable form was discussed and 
the mobility formula of Milinski (1991) was corrected. 

The new mobility formula 

(1.1) 

has essentially kept the form given by Milinski. Here e is the electronic charge, N is 
the total number of carriers in the conduction band and a;, CY: are respectively the first 
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and second derivatives, with respect to frequency o, of force-force correlation function 
a = a&o) + iw,(w). This formula is based entirely on quantum mechanical concepts; 
besides it is valid also for the stronger-scattering case provided that a:. a: are evaluated 
correctly. In the applications Pna l  et ~l 1992) of equation (1.1) to acoustic and polar 
optic phonons, it was shown to have given good agreement with the known results whereas 
before its correction Milinski's application (Milinski and Nettel 1988) showed a singular 
character. In order to show the usefulness of the new formula, applications were made also 
to pseudopotential scattering in liquid metals (urial and Alkan 1993) and to the completely 
disordered lattice (AktaS et d 1993) all giving satisfactory results. Transport properties of 
carriers in Ge crystals were subject to intensive work in the 1950s (Morin 1954). At that 
time, it  was believed generally that the classical Boltzmann transport equation treatment 
of the problem gave (Morin and Maita 1954) sufficiently good results to compare with 
experiment. Later it was shown that (Paige 1964) as T increases, scattering from optic 
phonons becomes more effective and the effects of all the other sources which may cause 
temperature variation of g, e.g effective mass m, deformation potential D, elastic constant 
and inter-valley phonons, are insignificant. Paige used adjustable constants in order to make 
the calculated /I values as close as possible to the measured ones. Therefore one cannot say 
that his calculations are absolutely theoretical. This point will be discussed more fully in 
later sections. Here in this work we wanted to do a pure theoretical calculation; our results 
obtained from equation (1.1) agreed satisfactorily with the experiment. Section 2 concerns 
the model system and writing the derivatives of the real part of the correlation function a:, 
a:. In section 3 we have carried out the calculation of mobility by evaluating a: and a: and 
by using equation (1.1). The appendix concerns the evaluation of I ,  and 12 integrals which 
appear in the definition of correlation functions. In section 4 the calculations of section 3 
are repeated by considering the tensor character of effective mass. Finally in section 5 the 
results are discussed. 

2. Optical deformation potential model 

In pure semiconductors we can describe the coupling between the carriers and the rest of 
the many-particle system by the optical deformation potential U: 

(2.1 ) U = Uqn~+qak(b, + b-,,) t 
k. q 

where QL+* and ak are creation and annihilation operators of carriers with wave vectors 
k + q and k respectively. b!, and b, are also creation and annihilation operators for the 
longitudinal phonon with frequency w,. U, is the interaction matrix element as follows 
(Seeger 1989): 

(2.2) 

where D is the optical deformation constant of the band edge (in units of eV cm-I), hwo 
is the optical phonon energy, p is the density of the solid and V is the volume per atom. 
The effect of the spin factor will be taken into account during calculations. The energy 
spectrum of the considered system is first assumed to be simply parabolic 

%2L2 
,I n 

E(k )  = - 2m (2.3) 
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with effective mass m; later the effect of different effective masses in the constant energy 
surface are considered. In the new formula &I), ui(0) and u;(O) are given, in the w -+ 0 
limit, by 

(2.4) 

4 n  
ffr(0) = --h ~f i2qZ[UqIZnk( l  - nk+q)[(Nq + I)S”‘(AE) + N q 6 ( A E ’ ) ]  (2.3 

k , q  

where Ab? = &+q - & + hoo, AE‘ = Ek+* - Ex - h q .  ntese expressions have been 
taken from equations (2.19) and (2.20) of our first study ( h a l  et al 1992). Rere nk. N p  are 
electron and phonon occupation numbers respectively, S’(AE) is the derivative of the usual 
Dirac delta function whith respect to AE and the other deltas have similar meanings. By 
changing indices in the first terms in curly brackets in equatiohs (2.4) and (2.5) and using 
,3 = l / k T  with T temperature and k the Boltvnann constant we have 

nkw(Nq + 1) =nk~qe+*” .  (2.6) 

By using the general relation 

together with 1 - nr = 1, we have 

These expressions will be evaluated in the next section by turning the sums over k, q into 
integrations in the usual way (Unal et ai 1992) and then they will be used in the mobility 
equation (1.1). 

3. Calculation of mobility 

In order to calculate mobility, first we have to evaluate a; and a: and since the process 
is lengthy but straightforward it will be described briefly. In equation (2.8) we define 
two terms such that a#) contains 6”(AE‘) and ai(23) contains 8’(AE‘), & ( A s )  together, 
which are evaluated separately. The integration is carried out in the order dq +-+ du H 

dk because with this order, during the transformation of the delta function into simpler 
forms the Jacobians never become zero; otherwise nothing fixes the order of integration 
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Table 1. The values of 11. h obtained by numerical calculation. 

(I =TDIT 11 11 

0.1 277.62 379.34 
0.2 102.03 
0.3 56.17 
0.4 36.85 
0.5 26.75 
a 6  20.76 
0.7 16.90 
0.8 14.28 
0.9 12.41 
1 .o 11.04 
1.1 10.01 
1.2 9.22 
1.3 8.60 
1.4 8.11 
1.5 1.72 
2.0 664 
2.5 6.28 
3.0 6.20 
3.3 6.22 

~ .. 
133.38 
70.37 
4425 
30.79 
22.92 
17.92 
14.57 
12.21 
10.50 
9.23 
8.26 
7.52 
6.94 
6.48 
5.27 
4.91 
4.87 
4.93 

and the result will be the same irrespective of order. Related integrals are evaluated in the 
appendix; using the notation a: = a:(l) + (u:(23), a: they are given by 

(3.1~) 

The integrals I , ,  IZ depend on T through the parameter Q = TDJT and values of I I ,  IZ 
obtained by numerical calculation are shown in table 1. Through the inspection of this 
table it is seen that change of I*, IZ integrals with T is not very fast, so the temperature 
dependence of @ is mainly due to the factor Nq involved in equation (1.1). 

Using this table. shortly it will be shown that the p versus T curve is smooth and 
asymptotic to the vertical axis at T = 0 (see equation (4.2) and figure 1). In the calculations 
the Debye temperature for Ge is taken (Sze 1981) to be TD = 429 K, the effective mass 
m = 0.2m0 and the density is p = 5.3267 g c ~ n - ~ .  The deformation potential constant, as 
calculated from D = dl0(con)/2n, has the value D = -2.45 x lo8 eV cm-I when we take 
(Potz and Vogl 1981) dlo(con) = -27.7 eV and lattice constant a = 5.646 A. The mobility 
equation is obtained by using a:, a: given by equations (3.1), (3.1~) in equation (1.1); then 
we have 

where the function f(T/TD) is given by 
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lT/TDl 
Figure 1. Vasiatian of the function f (T/TD)  with T/TD 

0.1 0.2 0.5 1 2 5 

Figure 2. Variation of the function f , ( T / T d  with T/TD 

with Nq = (e' - I)-' and TD/T .  This function is shown in figure 1. The T dependence of 
f ( T / T D )  contains factors like the root and exponential, therefore it is not a simple function. 
Its curve (figure 1) shows an imperceptible structure around 400600 K. 

Morin and Maita (1954) assumed lattice scattering by optical modes to be pop = 
BT-0.5(eTD/T - 1) with E an adjustable constant. They combined this with the acoustical 
phonon scattering mobility paC and equated the result to the measured mobility between 
100 and 300 K. By this means they obtained the value of constant E and the result was 
an excellent agreement with experiment. For the reasons below this assumption cannot 
be accepted. In actual fact one cannot take B to be constant, because mobility formulas 
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derived from pure theory show that B contains T-dependent integrals (Nag 1972). The 
mobility expression obtained from the Boltzmann equation in the momentum relaxation 
time approximation is 

4(21r)~eh~p(kT)~ 
3mSD2 f ,(T/TD) ILS = 

where the function f3(T/T~) is given by (Seeger 1989) 

112 X3/2e-x& lm (x + a) + e'Re{(x - a)2]' 
f,(T/To) = (F) (eTD/T - 1) 

(3.3) 

(3.3a) 

When we compare this with the expression of Morin and Maita (1954) we can see that 
their B cannot be taken to be constant. We checked that B values change about 20 times 
between 100 K and 400 K. Since Seeger (1989) has taken this variation into account, we 
thought that comparison of our p values with his would be appropriate. We include his fs 
curve in figure 2 for comparison. 

4. Calcdatiou of mobility using effective mass tensor 

In the previous section a single effective mass was assumed for each of lhe conduction 
band minima which is usually done when preliminary results are required. It is known 
that the Ge crystal has eight minima in the conduction band; constant energy surfaces in k 
space around these minima have ellipsoidal shapes rather than being spherical. To he more 
realistic one has to consider different values for longitudinal and transverse effective masses 
mL, mT respectively. Taking this fact into account we cannot use the spherical coordinates 
of section 3; here we have to use cylindrical coordinates whose ki axis is in the direction of 
the applied field. We take one constant energy ellipsoid ink space and find longitudinal p~ 
by considering the external field to be applied longitudinally; afterwards the external field 
is turned to the transverse direction and the corresponding ILT value is calculated in tum. 
These mobilities are averaged by adding them together and dividing by two. In fact the 
averaging procedure should not be as simple as this because, in Ge, the longitudinal axes 
of equivalent ellipsoids in k space are not perpendicular to each other; if they were so, as 
in the case of Si, then our averaging would be exact. Since our aim is to estimate the order 
of mobility and to provide an alternative basis for mobility calculations we preferred the 
simple averaging process. Evaluation of a:, a): is carried out by using similar mathematical 
techniques as used in section 3. For longitudinal mobility we have 

(4.lb) 
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where KO, K1, K2 are Bessel functions. For transverse mobility we have 

(4.2) 

a 
2 

12 = - e"/'K2(a) - 3ed'2K1(a) +6neo'*K0(a). (4.26) 

Taking mL = 1.64m0, mT = 0.082mo we calculated p ~ ,  pT values at room temperature to 
be = 317.2 cmz V-I s-' and PT = 19.35 X lo4 cmz V-I s-l . Th e average mobility 
p = (PL+PT)/2 is p = 9.7 x 104 cm2 V-I s-l which has the expected order of magnitude. 
As will be discussed in section 5, this value of mobility is not very different from the value 
p = 1.8 x IO4 cm2 V-' s-' obtained for the homogeneous mass case studied in the previous 
section. For this reason we have not drawn any curves in this section. 

5. condusions 

We have carried out mobility calculations for both the homogeneous mass and 
inhomogeneous mass cases. Let us first look at section 3 and compare its results with 
experiment and also with other results in the literature. If we look at equations (3.3) and 
(3.2), we can see that apart from the function f ( T / T o ) ,  the prefactors are the same. So 
the difference between the two mobility equations comes from the function f ( T / T D ) .  At 
T = 300 K, by using equation (3.2) we obtained the mobility to be 1.8 x 104 cmz 
V-' SKI. This value is reasonably close to the experimental value 0.39 x IO4 cm2 V-' s-' 
given by Price (1953). If we combine optic and acoustic phonon scattering mobilities we 
obtain still a better result fi  = 0.43 x IO4 cm2 V-' s-I. The acoustic phonon scattering 
mobility hac obtained from equation (1.1) has been shown to be paC = (9nj32)fio where 
/LO is the classical result (Unal ef al 1992) and we have used this formula in calculating the 
acoustic phonon contribution, while, at the same temperature, the mobility formula (3.3) 
introduced in Seeger's book (1989) gives a value of order IO6 anz V-' s - l .  This difference 
between two mobility values obtained from two different formulas is very important. As 
mentioned earlier in the introduction, in intrinsic semiconductors like Ge, we expect that 
optical phonons should be dominant in determining the mobility. If we consider another 
scattering, in order to obtain the mobility of the system we have to sum the reciprocals of 
the mobilities, as l/p = 1/pl + l/p*. So the smaller mobility determines the mobility 
of the system. In our work, we considered only the contribution of the optical phonons to 
the mobility. Our result is about IO2 times smaller than the value obtained from Seeger's 
formula (3.3), and therefore is closer to experiment. From this closeness we can say that 
optical phonons determine the mobility at room temperature and above. This conclusion 
entirely obeys our expectations. On the other hand Seeger's results are very far from 
satisfying such an expectation. The behaviour of theoretical mobility is determined by our 
f versus I/a curve (figure 1) which extends far beyond the temperature interval covered by 
the experimental curve. Therefore we did not draw the theoretical and experimental curves 
together; we only compared the two at one point corresponding to room T .  Now we can 
explain why our result is 4.6 times greater than the experimental value. In our calculation, 
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we assumed a parabolic band, neglecting the dependence on T of effective masses and 
the band gap. It is known that both of these quantities do depend on T significantly (Sze 
1981). The largest effect comes from !he optical deformation constant D which appears 
in the prefactor of the mobility formula. Several different values are given for it (Renucci 
er al 1974, Richter et al 1978), and each of them differs from the others by a factor of 
three or five. This shows that various theoretical methods used for the estimation of D 
disagree to a great extent (Potz and Vogl 1981). To obtain a mobility comparable with 
experiment, above all, it is necessary that we should know the true value of D as far as 
possible. We believe that uncertainties in the value of D prevent us from getting any closer 
to experiment. The results of section 4 are not far from that of section 3; taking a single 
homogeneous mass gives & = 1.8 x 104 cm2 V-' s-' and taking two different masses in 
the inhomogeneous case gives p = 9.7 x lo4 cm2 V-' s-' . The calculations of section 
3 alone are sufficient for comparison purposes with the experiment as neither a new nor a 
better approximation appears from section 4. However the outcomes of section 4 do show 
that changes in the effective mass would influence the value of p to a great extent. Owing 
to the difficulties encountered when we try to average mobilities for different directions, as 
mentioned in section 4, it is better to employ a single homogeneous mass for Ge. 

Appendix 

In this appendix we show how to evaluate the three terms of equation (2.8) by writing a; in 
the form a; = ai(1) + rui(23) where rui(1) is the contribution of the first term which reads 

where 6"(AE') is given by, with U = cos0 

If we consider the following expression (Una1 et al 1992): 

we obtain 

where A' = 2mhoo has been defined and the notation (.) shows all the prefactors 
before the summation sign in (A.1). From two roots hql = hkv - @zk2v2 + 2mho0)'/~, 
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hq2 = hkv + @2k2v2 + 2mho0)'/~ the negative root R q l  has been dropped out as being 
unphysical. The effect of the derivative delta function on h4q4 may be considered by using 
equation (2.7) and equation (A.4) becomes 

- 12ft3q: + 

(h2k2v2 + A2)'12 (h2k2v2 + A2) 

. .  
+I hkdvrhkv + (h2k2u2 + +'/ hk -, (h2k2v2 + A2)3/2(hZk2v2 + A2) 

Integration over v is canied out easily, and to do the d(hk) integral we replace it as usual 
by the energy integral dE, 

16 ( E  + hq)'/' + (E)'/* +- (E)'/2In(E + * u p  - (E)"2 

1(1) 
D2m4Nq V 

3plr3h4 
ai(1) = 

where I (1) is the dimensionless integral 

a is given by a = TojT and TD is the lattice temperature defined as To = hw/k.  The 
contribution of second plus third terms of equation (2.8) is calculated in a similar way: 

(A.lO) 
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where  

We may evalua te  a: i n  equa t ion  (2.9) similarly,  and t h e  results are 

, DZm4NPV 
U, = I1 

a:' = W I Z  

3pr r3h4  

D2m4NqV 
3pn3h4 

(A.lOa) 

(A.ll) 

(A.12) 

(A.l la) 
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